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Slide one of this presentation by Jason B. Hill on polynomial time
permutation group algorithms has a sentence containing ten a’s, three b’s,
three c’s, three d’s, forty-one e’s, nine f’s, eight g’s, fifteen h’s, twenty-five
i’s, two j’s, one k, eight l’s, five m’s, twenty-eight n’s, twenty-one o’s, five
p’s, one q, twelve r’s, thirty-two s’s, thirty-five t’s, three u’s, six v’s, eight
w’s, two x’s, nine y’s, and one z.
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Resources:

• GAP code for Schreier-Sims functions (under this talk) at

http://math.jasonbhill.com/talks

• Alexander Hulpke’s “Notes on Computational Group Theory”

• Holt, et al’s “Handbook of Computational Group Theory”

• Seress’ “Permutation Group Algorithms”
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GAP and Sage

GAP and Sage

During this talk, I will reference two (free) software packages:

GAP – Groups, Algorithms and Programming

http://www.gap-system.org/

Sage (especially Sage Combinat)

http://www.sagemath.org/

http://wiki.sagemath.org/combinat
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GAP and Sage

GAP and Sage

To create a permutation group in GAP or Sage:

GAP: (as cycles in the GAP language)
gap> G:=Group((1,2,3),(1,2));

Group([ (1,2,3), (1,2) ])

gap> Order(G);

6

Sage: (as a Python list of Python tuples)
sage: G=PermutationGroup([(1,2,3),(1,2)])

sage: G.order()

6
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GAP and Sage

GAP –vs– Sage

• Sage uses GAP for most permutation group calculations.

• Unfortunately, there isn’t consistency between GAP and Sage.

Example:
gap> G:=Group((45,46),(96,97));; DegreeAction(G);

4

sage: G=PermutationGroup([(45,46),(96,97)])

sage: G.degree()

97

• Notice that this makes a notion of primitivity in Sage, for instance,
not precise with existing literature. (What is the size of a block?)

• Recent patches to Sage Combinat by Mike Hansen and myself have
made Sage more consistent with GAP, but GAP is still better suited
to serious work.
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Background

Background
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Background

Group Actions

Group Action

A group G acts on a set (domain) Ω if

• ω1 = ω for all ω ∈ Ω.

• (ωg )h = ωgh for all ω ∈ Ω and all g , h ∈ G .

For Permutation Groups:

• We really define a group along with an action.

• Group elements are permutations acting on Ω (usually Ω ⊂ Z≥1).

• The group operation is composition of permutations.

• The same group may be used in vastly different actions. Upon fixing
an action, we will refer to both the group and the action as G . (We
will see an example shortly of why such things matter.)
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Background

Orbits and Point Stabilizers

Orbits and Point Stabilizers

For ω ∈ Ω define the orbit

ωG = {ωg | g ∈ G} ⊂ Ω

and the point stabilizer

Gω = StabG (ω) = {g ∈ G | ωg = ω}.

Orbit-Stabilizer Theorem: For ω ∈ Ω there is a bijection between ωG

and the set G
\G

ω (right cosets of Gω in G ) given by ωg ↔ Gω · g . In
particular (for finite groups anyway) |ωG | = [G : Gω].
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Background

More Definitions

For a permutation group G acting on Ω. . .

Degree

The degree of G is |Ω|. Unless otherwise indicated, we set n := |Ω|.

Transitive

G is transitive if for all ω1, ω2 ∈ Ω there exists some g ∈ G such that ωg
1 = ω2.

Primitive

G is primitive if it preserves no non-trivial equivalence relation on Ω. Equivalently,
G is primitive if Ω cannot be partitioned into non-trivial “blocks” such that the
action of G preserves the blocks.

Base

A base for G is a subset B ⊂ Ω such that the only element of G stabilizing all
points of B is the identity.
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Background

Cube Rotations

Example: Consider the rotational group of the cube:

gap> x:=(1,2,4,3)(5,7,8,6)(9,10,11,12)(13,16,15,14)(17,18,19,20);;

gap> y:=(1,6,8,3)(2,5,7,4)(9,13,15,11)(10,18,16,19)(12,17,14,20);;

gap> z:=(1,2,5,6)(3,4,7,8)(9,18,13,17)(10,16,14,12)(11,19,15,20);;

gap> G:=Group(x,y,z);;

3 4

21

8

6 5

7

11

19

16

13

17

12

20

14

15

.
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Background

Cube Rotations

We could consider acting only on the vertices:

gap> r:=(1,2,4,3)(5,7,8,6);;

gap> s:=(1,6,8,3)(2,5,7,4);;

gap> t:=(1,2,5,6)(3,4,7,8);;

gap> H:=Group(r,s,t);;

3 4

21

8

6 5

7

.
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Background

Cube Rotations

gap> IsomorphismGroups(G,SymmetricGroup(4));

gap> IsomorphismGroups(H,SymmetricGroup(4));

show us that

ϕ1 : G → S4 :

{
x 7→ (1, 2, 3, 4)

z 7→ (1, 4, 2, 3)
and ϕ2 : H → S4 :

{
r 7→ (1, 2, 3, 4)

t 7→ (1, 4, 2, 3)

are isomorphisms. Hence, G ' H ' S4 while the corresponding actions are
clearly different.
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Background

Cube Rotations Summary

G ≤ S20 H ≤ S8 S4

domain [1 . . . 20] [1 . . . 8] [1 . . . 4]

transitive no yes yes
orbits [1 . . . 8] and [9 . . . 20] [1 . . . 8] [1 . . . 4]

primitive no no yes
block system edges and vertices long diagonals trivial

base [1, 2] [1, 2] [1, 2, 3]

Moral: Intuitive understandings of S4 can differ drastically from its
real-world implementations. Such situations need to be taken into account
when designing data structures or algorithms that handle these groups. If
we want to work with groups having degree > 106, for instance, then
intuition probably won’t help guide us much. But, if we work with a
well-known group, the output should make sense.
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Memory and Time

Memory and Time
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Memory and Time

Memory and Time

While our intuitive understanding of groups/actions may place extraneous
requirements on a data structure or algorithm, there are two restrictions
that mechanically limit even a perfect data structure or algorithm design.

1 Memory

2 Computation Time
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Memory and Time

Memory

How should we store (in a computer) permutation group elements?

Example of How We Could Fail:

• Try to store all elements. But, how?

• We know each permutation group has a base. In fact, each
permutation group element induces a unique “base image” by acting
on each element of the base. (Perhaps one should think of this as a
reduced permutation diagram.)

• Thus, storing base images may be a reasonable approach.

• For example, in S5 with base [1, 2, 3, 4], the permutation (1, 2) would
be recorded as [2, 1, 3, 4] and (1, 5)(2, 3, 4) as [5, 3, 4, 2].

• Limit parentheses, extra characters, etc.
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Memory and Time

Memory

How much memory does it take to store all elements of Sn as base images?

• A base for Sn is [1, . . . , n − 1], so each base image is expressed in

n−1∑
j=1

dlog2(j)e

bits. (This is of course a conservative estimate.) Multiplying by n!
and dividing by 8× 1012 we find that all elements of Sn are recordable
in no less than

log2

(
(n − 1)!n!

)
8× 1012

=
log2

(
Γ(n)Γ(n+1)

)
8× 1012

terabytes.

• In this manner, turning every atom in the observable universe into a
1TB hard disk allows one to only consider up to S64.

• Clearly we need a different approach.
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Memory and Time

Polynomial Time

L ⊆ AL = P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

L ( PSPACE , P ( EXPTIME

Polynomial Time P

An algorithm is said to be polynomial time if its running time is upper
bounded by a polynomial in the size of the input for the algorithm, i.e.,
T (n) = O(nk) for some constant k .

Examples:

• The “quicksort” sorting algorithm on n integers performs at most An2

operations for some constant A. Thus it runs in time O(n2).

• All basic arithmetic operations on a computer can be done in
polynomial time.
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Permutation Group Algorithms in Polynomial Time

Permutation Group Algorithms in Polynomial Time
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Permutation Group Algorithms in Polynomial Time

“Plain Vanilla” Orbit Algorithm

Let G = 〈g〉 with g = {g1, . . . , gm}, acting on Ω.

In some sense, the most basic algorithm is the orbit algorithm.

“Plain Vanilla” Orbit Algorithm

Input: g = {g1, . . . , gm}, ω ∈ Ω. Output: ωG .

1: ∆ := [ω];

2: for δ ∈ ∆ do

3: for i ∈ {1, . . . ,m} do

4: γ := δgi ;

5: if γ /∈ ∆ then

6: Append γ to ∆;

7: fi;

8: od;

9: od;

10: return ∆;
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“Plain Vanilla” Orbit Algorithm

Example: Using the group G ≤ S20 (cube rotations) from earlier:

gap> jbhOrbitAlgVanilla([x,y,z],2);

[ 2, 5, 4, 6, 7, 3, 1, 8 ]

Some notes on the Plain Vanilla Orbit Algorithm:

• m generators of G and |Ω| = n yields a runtime of O(nm).

• Thus, naively, the algorithm has a linear runtime.

• However, note that step 2 is non-primitive recursive.

• Also, step 5 is a search problem.

• Once the orbit is created, information about specifically how it was
created is lost. This would be nice information to store and
introduces little complexity.
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Modified Orbit Algorithm

We will change steps 1 and 6 of the algorithm:

Orbit Algorithm

Input: g = {g1, . . . , gm}, ω ∈ Ω. Output: ωG , transversal T .

1: ∆ := [ω], T = [()];

2: for δ ∈ ∆ do

3: for i ∈ {1, . . . ,m} do

4: γ := δgi ;

5: if γ /∈ ∆ then

6: Append γ to ∆, Append T [δ] · gi to T ;

7: fi;

8: od;

9: od;

10: return ∆;

23



Permutation Group Algorithms in Polynomial Time

Modified Orbit Algorithm

Example:

gap> jbhOrbitAlgTrans([(1,2,3),(4,5,6)],2);

[ [ 2, 3, 1 ], [ (), (1,2,3), (1,2,3)(1,2,3) ] ]

About T :

• T provides a relation between δ ∈ ωG and g ∈ G such that ωg = δ.

• I.e., it gives a representative in G for each orbit element.

• A list of such representatives T is called a transversal.

• By the Orbit-Stabilizer Theorem, T is simultaneously a set of
representatives for the cosets of Gω = StabG (ω) ≤ G .

• Almost for free, we get limited information about stabilizer subgroups.
We should exploit this idea more.
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Schreier Vectors

There are some problems with this approach:

• Storing T will become a problem for long orbits.

• Instead, we should store only pointers to generators.

• This is accomplished with the following definition.

Schreier Vector for ∆ = ωG

A Schreier vector is a list S = [S [∆[1]], S [∆[2]], . . . ,S [∆[|∆|]]] satisfying

1 S [∆[i ]] ∈ g for 1 ≤ i ≤ |∆|.
2 S [ω] = ()

3 S [δ] = g ad δg
−1

= γ, then γ precedes δ in ∆.

Sometimes a Schreier vector is called a “factored transversal.”
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Orbit Algorithm with Schreier Vector

Orbit Algorithm with Schreier Vector

Input: g = {g1, . . . , gm}, ω ∈ Ω. Output: ωG , Schreier vector S .

1: ∆ := [ω], S = [1];

2: for δ ∈ ∆ do

3: for i ∈ {1, . . . ,m} do

4: γ := δgi ;

5: if γ /∈ ∆ then

6: Append γ to ∆, Append i to S ;

7: fi;

8: od;

9: od;

10: return ∆;
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Schreier Vectors

Example:

gap> jbhOrbitAlgTrans([(1,2,3),(4,5,6)],2);

[ [ 2, 3, 1 ], [ (), (1,2,3), (1,2,3)(1,2,3) ] ]

gap> jbhOrbitAlg([(1,2,3),(4,5,6)],2);

[ [ 2, 3, 1 ], [ (), 1, 1 ] ]

Question: We now have a way to find coset representatives of point
stabilizers in linear time. Can this be translated in some way to yield
generators for the point stabilizers? (Yes.)
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Schreier’s Theorem

Schreier’s Theorem

Let G = 〈g〉 be a finitely generated group and H ≤ G with [G : H] <∞.
Suppose r = {r1 = 1, r2, . . . , rm} is a set of (right) coset representatives
for H in G . For k ∈ G write k to denote the representative k := ri with
Hri = Hk . Let

U := {rigj(rigj)
−1 | ri ∈ r , gj ∈ g}.

Then H = 〈U〉. U is called a set of Schreier generators for H.

As a consequence, we could rewrite the orbit algorithm a final time so that
it produces an orbit, a Schreier vector, and stabilizer generators.

Question: Can we use this process to decompose an entire group,
recursively by one point-stabilizer at a time? (Yes.)
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A Slight Detour: Normal Closure

Normal Closure

Let U ≤ G . The normal closure of U in G is

〈U〉G =
⋂
{N | U ≤ N C G}

and is the smallest normal subgroup of G containing U.

Without too much work, the orbit algorithm can be modified to calculate
normal closure. (Instead of acting on domain points by permutations, we
act on group elements by conjugation.)
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A Slight Detour: Normal Closure

As a result, the following calculations are known to be in polynomial time:

• Normal closure of subgroups.

• Testing if a subgroup is normal. (N C G implies 〈N〉G = N.)

• Computation of commutator subgroups:

G ′ =
〈
a−1b−1ab | a, b ∈ g

〉
G

• Computation of the derived series and lower central series.

• Is G solvable? Is G nilpotent?
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Thank You
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